Comput Math Organiz Theor (2007) 13:283-314
DOI 10.1007/s10588-006-9001-8

Analysis of meeting protocols by formalisation,
simulation, and verification

Catholijn M. Jonker - Martijn C. Schut -
Jan Treur - Pmar Yolum

Published online: 30 September 2006
© Springer Science + Business Media, LLC 2006

Abstract Organizations depend on regular meetings to carry out their everyday tasks.
When carried out successfully, meetings offer a common medium for participants to
exchange ideas and make decisions. However, many meetings suffer from unfocused
discussions or irrelevant dialogues. To study meetings in detail, we first formalize
general properties of meetings and a generic meeting protocol to specify how roles
in a meeting should interact to realize these properties. This generic protocol is used
as a starting point to study real-life meetings. Next, an example meeting is simulated
using the generic meeting protocol. The general properties are formally verified in the
simulation trace. Next, these properties are also verified formally against empirical
data of a real meeting in the same context. A comparison of the two traces reveals
that a real meeting is more robust since when exceptions happen and the rules of the
protocol are violated, these exceptions are handled effectively. Given this observation,
a more refined protocol is specified that includes exception-handling strategies. Based

C. M. Jonker (<)

Delft University of Technology, Man-Machine Interaction, Mekelweg 4, 2628 CD Delft,
The Netherlands

e-mail: catholijn@mmi.tudelft.nl

M. C. Schut - J. Treur
Vrije Universiteit Amsterdam, Department of Artificial Intelligence, De Boelelaan 1081a,
1081HV Amsterdam, The Netherlands

M. C. Schut
e-mail: schut@few.vu.nl

J. Treur
e-mail: treur@few.vu.nl

P. Yolum
Department of Computer Engineering, Bogazici University, TR-34342 Bebek, Istanbul, Turkey
e-mail: pinar.yolum@boun.edu.tr

@ Springer

284 C. Jonker et al.

on this refined protocol a meeting is simulated that closely resembles the real meeting.
This protocol is then validated against another set of data from another real meeting.
By iteratively adding exception handling rules, the protocol is enhanced to handle a
variety of situations successfully.

Keywords Meeting protocols - Dynamic properties - Temporal logical
formalisation - Simulation - Verification - Organisation modeling

1 Introduction

Meetings are an integral part of every day life. Meetings are important tools in most or-
ganizations to structure decision processes and to disseminate information throughout
the organization. Typically, the members of a group come together on a regular basis to
inform each other of new developments, to discuss problems, and to propose solutions.
While many organizations depend on face-to-face meetings, it is notoriously difficult
to hold a focused and effective meeting. Informal representations make it difficult to
analyze meeting protocols. Intuitively, if the rules of the participants are set correctly,
meetings should proceed successfully. For example, if all the participants in a meeting
are allowed to speak for only a certain time frame, then we may guarantee that a meet-
ing will end on time. Similarly, if the chair of a meeting is not allowed to skip items
on the meeting agenda, we may guarantee that all items are treated in the meeting. If
the rules of a meeting can be captured, then we can develop methods to predict the
meetings that will take place. Even though there is an abundant literature about guide-
lines on how to carry a successful meeting, these guidelines are rather informal, which
makes it hard to put into practice and hard to evaluate (Wolf, 2002; Creighton, 2002).

A meeting can be effective only if the rules of the meeting, the meeting protocol
is well-defined. This paper formalizes a domain-independent meeting protocol that
can be used in various meetings. The protocol aimed for is the result of a process
of iteratively revising an initial (possibly trivial) protocol to match with observed
(empirical) meeting behavior. This paper demonstrates some first steps of this process:

(1) We start with a meeting protocol that is based on some meeting guidelines found
in the literature and our own (intuitive) knowledge of conducting meetings;

(2) We simulate a meeting where the participants follow the meeting protocol men-
tioned in Step 1. During the simulation, we record the actions of the participants
at each time step, which forms a simulation trace.

(3) We then observe a real meeting and again record the actions of the participants at
each time step, which forms an empirical trace.

(4) Based on the discrepancies between the protocol and the observed meeting, we
revise the protocol. Although it may seem counterintuitive that we start with a
rigid formalization, it must be understood that the ultimate formalization will be
the result of a process that includes real practiced meeting behavior. Ultimately,
the formalization captures many intuitive ideas that are also mentioned in meeting
guidelines. Also, the formalization eventually captures actions that need to be
carried out by participants as well as constraints that each participant has to satisfy.

The main aim of this work is to understand how meeting protocols are carried out,
by understanding the different flows that take place in meetings. To achieve this, we

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 285

study the meeting protocol for an empirical trace as well as with a simulated trace
and analyze various properties. The empirical trace is based on observations of a real
meeting. The simulated trace is generated in a simulation environment where agents
are assumed to follow the meeting protocol strictly.

The two traces are not only compared in terms of which of the protocol rules they
satisfy (and which not) but also in terms of more global overall properties that are
considered desirable for a meeting. It turns out that at a number of points in time the
empirical trace does not satisfy some protocol rules, but still is not ineffective. This
is due to the fact that as soon as exceptions on the protocol rules occur, participants
(and in particular the chair person) undertake specific actions to get the meeting on the
right track soon. Therefore an effective meeting need not satisfy all protocol rules. This
gives the protocol rules the states of rules-with-exceptions, and other, more specific
rules are used to handle exceptions if they occur (for example, re-opening an already
closed agenda item if someone still talks about it). This new perspective has led to a
second, more refined meeting protocol specification, in which for a number of rules
also exception rules are added, i.e., rules about what to do if the original rule is not
satisfied. This refined protocol is tested for a second empirical trace of a meeting.

The rest of this paper is organized as follows. Section 2 gives a technical background
on the agent-based modeling approach used and the methodological perspective.
Section 3 develops the formal generic meeting protocol. Section 4 introduces a sim-
ulation trace. Section 5 addresses the first empirical trace. Section 6 analyzes both
meeting traces in terms of desired properties. Section 7 presents the refined protocol
and a simulation based on this protocol. Sections 8 and 9 analyze the results for the re-
fined protocol. Section 10 discusses the relevant literature in comparison to this work.

2 Methodology

Two main components of our methodological perspective are analysis and simulation.
The analysis refers to the study of a process as a whole (e.g., an organization) as well
as the individual agents inside the process.

The analysis for a process as a whole includes the identification and specification of:

(a) the dynamic properties of the overall process (in informal, semi-formal or formal
manners),

(b) the dynamic properties for parts of the process recursively (e.g., departments, roles
or agents),

(c) the interlevel relationships between the dynamic properties of the whole and dy-
namic properties of parts; e.g., the dynamic properties of the parts imply the
dynamic properties of the whole.

To formally specify dynamic properties characterising dynamics of meetings, an ex-
pressive language is needed. To this end the Temporal Trace Language TTL is used
(cf. Jonker and Treur, 2002); this language is briefly defined as follows. Examples of
properties expressed in TTL can be found in later sections.

A state ontology is a specification (in order-sorted logic) of a vocabulary, i.e., a
signature. A state for ontology Ont is an assignment of truth-values {true, false} to the
set At(Ont) of ground atoms expressed in terms of Ont. The set of all possible states

@ Springer

286 C. Jonker et al.

for state ontology Ont is denoted by STATES(Ont). The set of state properties STAT-
PROP(Ont) for state ontology Ont is the set of all propositions over ground atoms from
At(Ont). A fixed time frame T is assumed which is linearly ordered. Atrace ortrajectory
y over a state ontology Ont and time frame T is a mapping y : T — STATES(Ont), i.e.,
a sequence of states y; (t € T) in STATES(Ont). The set of all traces over state ontology
Ont is denoted by TRACES (Ont). Depending on the application, the time frame T may
be dense (e.g., the real numbers), or discrete (e.g., the set of integers or natural num-
bers or a finite initial segment of the natural numbers), or any other form, as long as it
has a linear ordering. The set of dynamic properties DYNPROPEXP (Ont) is the set of
temporal statements that can be formulated with respect to traces based on the state on-
tology Ont in the following manner (for an organization or part thereof, Ont is the union
of all input, output and internal state ontologies of the roles in the organization (part)).

Given a trace y over state ontology Ont, the input state of a role at time point t
is denoted by state (y, t, input(r)); analogously, state(y, t, output(r)), and state(y, t,
internal(r)) denote the output state and internal state of the role. These states can be
related to state properties via the formally defined satisfaction relation denoted by
the infix predicate =, comparable to the Holds-predicate in the Situation Calculus:
state(y, t, output(r)) = p denotes that state property p holds in trace y at time t in
the output state of the organism. Based on these statements, dynamic properties can
be formulated in a formal manner in a sorted first-order predicate logic with sorts T
for time points, Trace for traces and F for state formulae, using quantifiers over time
and the usual first-order logical connectives such as —, &, v, =, V, 3. Within TTL
abstractions can be made by introducing additional terms (e.g., predicates), which are
definable in terms of the existing terms.

In order to specify simulation models, a simpler temporal language has been de-
veloped, based on TTL. This language (the leads to language) enables one to model
direct temporal dependencies between two state properties in successive states. This
executable format is defined as follows. Let o and B be state properties of the form
‘conjunction of atoms or negations of atoms’, and €, f, g, h non-negative real numbers.
In the leads 1o language @ —»¢ f g h B, means:

If state property aholds for a certain time interval with duration g,
then after some delay (between e and f) state property B will hold for a certain
time interval of length h.

A specification of dynamic properties in leads to format has as advantages that it is
executable and that it can often easily be depicted graphically. Moreover, the language
offers the possibility to express both qualitative and quantitative aspects of a process to
be simulated. Therefore, it combines the advantages of logic-oriented approaches such
as Barringer et al. (1996) and Forbus (1984) with those of mathematical approaches
like (Port and Gelder, 1995; Kelso, 1995) in the context of simulation modeling and
analysis (Law and Kelton, 2000). For a more precise definition of the leads to format,
see (Bosse et al., 2005).

Description of relationships between dynamic properties at different levels of ag-
gregation:

(a) provides a basis for formalized biological, cognitive, or organisational theories
and their validation,

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 287

(b) enables evaluation of trajectories of dynamics (at any level of aggregation) against
specified dynamic properties,

(c) allows diagnosis of malfunctioning,

(d) allows relating dynamic properties to empirical physical/chemical/physiological/
neurological data.

To aid simulation of processes, languages for specification of high-level executable
models can be used, thus obtaining tractable dynamic models for phenomena that, at
a too detailed level may be much more complex.

Techniques developed within Artificial Intelligence (and Computer Science) sup-
port this methodological perspective. Above all the agent-based modelling paradigm
is exploited (see above). Furthermore, for simulation Executable Temporal Logic
(Barringer et al., 1996) provides supporting languages and software environments for
discrete executable dynamic properties; e.g. (Fisher, 1994; Moss et al., 1998). This
can be extended to agent-based continuous-time approaches, e.g., based on real-valued
time intervals; (Jonker, Treur, and Wijngaards, 2002) is a contribution in this direction.

The agent-oriented modelling approach can be enriched by recently developed
modelling, compositional verification and model checking techniques. Examples of
such modelling techniques are process algebra; dynamic and temporal logic; event,
situation and fluent calculus; e.g., (Eck et al., 2001; Reiter, 2001). These modelling
techniques allow high-level expression of temporal relations, i.e., relations between a
state of a process at one point in time, and states at other points in time. In addition,
analysis techniques and tools for verification and model checking have progressed to
a more mature status in recent years; e.g., Carnegie-Mellon’s SMV, Cadence-SMYV,
and AT&T’s SPIN; (Clarke et al., 2000; Manna and Pnueli, 1995; Stirling, 2001).

Compositional verification (Roever, Langmaack, and Pnueli, 1998; Jonker and
Treur, 1998; Cornelissen, Jonker, and Treur, 2002) has been developed as a solid
method to relate dynamic properties at one aggregation level (e.g., the whole) to
dynamic properties at another level (e.g., parts or components), thus enabling formali-
sation of (domain) theories on dynamics. Also the integration of real-valued variables
and continuous time within model checking and verification environments is a useful
recent development that can be incorporated; e.g. (Henzinger et al., 1994; Gamboa
and Kaufmann, 2001).

3 Meetings formalized

To formalize meetings, its organizational structure, dynamic properties for the overall
process, and a protocol for role interactions have to be formalized

3.1 Organizational structure

The American Heritage® Dictionary of the English Language provides the following
definitions of a meeting: The act or process or an instance of coming together; an
encounter, an assembly or gathering of people, as for a business, social, or religious
purpose. We let a meeting be a gathering of people with a common purpose. The
common purpose, especially in a business setting, entails that the meeting is convened

@ Springer

288 C. Jonker et al.

to discuss issues related to that common purpose, and often with the aim to make some
decisions pertinent to the common purpose.

Experience shows that a meeting without some way to structure the discussions
takes much longer to reach a conclusion than a meeting in which the discussion is
structured. In fact, in any group of more than two people, discussion might lead to
different sub-groups discussing the same or different arguments. How can you be sure
that everyone hears all the arguments made? How can you be sure that everyone who
has something relevant to add to the discussion gets a chance to present her views?
How can it be achieved that all people involved (also those who were absent) have
access to the results of the meeting afterwards?

Therefore, a common form to structure meetings is the following. A Chairper-
son chairs every meeting. The Secretary takes minutes of the meeting. Given the
chosen meaning of the concept meeting, the dictionary says the following about the
Chairperson and Secretary roles:

¢ Chairperson
The presiding officer of an assembly, meeting, committee, or board.

e Secretary
An officer who keeps records, takes minutes of the meetings, and answers corre-
spondence, as for a company.

Depending on the type of meeting, also a Treasurer role may be distinguished; for
simplicity this role is not considered in this paper. Taking minutes means writing down
the arguments presented by the Participants of the meeting, as well as the decisions
made. Chairing a meeting means opening and closing a meeting, making sure that
people are talking one at a time, and that only the current issue is being discussed.
The decision process differs according to the customs or agreements in the group.
Common decision procedures are decision by consensus, decision by majority, and
decision by the Chairperson. In graphical form, the general structure of a meeting is
as depicted in Fig. 1. A question to be addressed is how dynamic properties describing
such a protocol can be identified.

3.2 Organizational behavior

Dynamic properties characterizing an organizational behavior can be specified at dif-
ferent levels: at the level of the organization as a whole (3.2.2), at the level of in-
teractions between roles (interaction protocol) (3.2.3), and at the level of roles. We

introduce the topic of organizational behavior by giving a brief overview of pointers
to background literature from sociology and organizational management (3.2.1).

Chairperson Secretary Participant

Meeting

Fig. 1 Generic meeting organization structure

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 289

3.2.1 Background

A large body of work exists that investigates the interactions between people in less
or more organized forms, of which some also specifically aimed at analyzing the
behaviors of persons in and the organization of meetings. We do not intend to give
a complete overview of this field, but rather to point out some specific references
from the literature. We briefly discuss works of Goffman, (1961, 1963) and Garfinkel
(1967). Also, we discuss Robert’s rules of order manual (Robert, 2000).

Goffman (1922-1982) studied human interactions, ranging from the way people
behave in public to different forms of ‘talk’. He was motivated by the differences
between ‘ourselves’ and our social images and developed theories on the idea how
people develop identities by means of social actions (e.g., gossip, grunts, etcetera).
With respect to the particular topic discussed in our paper (organization of meetings),
Goffman has published works on the social organization of gatherings (Goffman, 1961,
1963). The work of Goffman helps us position our research. In the paper, we namely
operationalize a rather strict notion of ‘meeting’, whereas the ‘gathering’ term of
Goffman has a much wider range. For example, interactions may be unfocused (‘they
result solely by virtue of persons being in one another’s presence’) or focused (‘people
effectively agree to sustain for a time a single focus of cognitive and visual attention’).
An encounter is then a ‘focused gathering’ and functions as the building block of social
organization. A special type of a social organization is a social group. But such a group
does not necessarily equate to a gathering or meeting. This becomes clear when the
different issues are considered between being a group member and a participant in
a gathering, e.g. leadership or tension-management. An aspect of leadership that is
extremely important in a gathering is the maintenance of communication ground rules;
this does not seem to be as important in group analysis.

Although we may want to say that our use of the term meeting is a special type of
gathering in Goffman’s terms and therefore rather restricted, it is clear that our notion
can be stretched further to include a wider range of ‘social interactions’. Still, this paper
presents a generic approach for analyzing and studying these types of interactions and
therefore not restricted to the meeting example that is worked here.

Ethnomethodology is a perspective on sociology, founded by Garfinkel in the early
1960s (Garfinkel, 1967). Put simply, it studies the way in which people make sense of
their social world. It is controversial as it does not assume that this world is orderly—
social order is established in the minds of social actors based on a series of impressions
and experiences that society confronts an individual with. This field is undoubtedly
much larger than the scope of this paper, and this prevents a comparison of the two on
that level. Still, ethnomethodology studies social structures relevant for our notion of
meetings and our approach of meeting analysis. Garfinkel proposes the documentary
method that deals with the issue that researchers (e.g., field workers doing ethno-
graphic and linguistic studies) may occasionally not presuppose any knowledge of
social structures, but must still eventually decide on facts, hypotheses, conjectures,
etcetera. An investigator in a sociological inquiry typically embeds observed events
in his presupposed knowledge. But these observations may not be directly witnessed;
for example, motivated actions will have to be ‘witnessed’ over a period of time rather
than that is an instantaneous observation. The method involves the search for “...an
identical homologous pattern underlying a vast variety of totally different realizations

@ Springer

290 C. Jonker et al.

of meaning” (Garfinkel, 1967). In contrast with other (earlier) methods (e.g., those
employed by functionalists, Marxists, symbolic interactionists), the underlying pattern
is not only derived from individual evidences, but the evidences are also interpreted
on the basis of what is known about the underlying pattern. Garfinkel presents an
experiment that exaggerates features of the method in order to illustrate it. The study
involved a number a students asking a (fake) study counselor questions about some se-
rious problem they needed advice on, where the counselor gave fixed answers without
even hearing the questions. Students were asked to comment on their conversation,
and these comments were the results of the study giving insights into how students
got through the conversation, whether students searched for and perceived a pattern,
etcetera. For more details on the experiment, see (Garfinkel, 1967, Chapter 3).

Whereas we saw that our relation to Goffman’s work was rather content-based (our
strict operational notion of meeting in comparison with his wide definition of gather-
ings), we see that our work relates to Garfinkel’s work on the methodological level.
Without making a complete comparison between our approach to meeting analysis
and the documentary method (which covers many more social interactions than, again,
our strict notion of a meeting), we expect that on this discussion level, the two may
benefit from each other. One straightforward example of such benefit is our inclusion
of formalization, enabling automated verification and validation, whereas at first sight
this cannot be found in Garfinkel’s method. We consider future studies in which we
elaborate on these methodological differences.

Finally, we discuss Robert’s rules of order (Robert, 2000). This is a standard work
on guiding people through conducting meetings—how does one carry on business
from one meeting to another, who keeps the order, how is a meeting best kept on track,
etcetera? Although first published in 1896, it is still considered to be an important
guideline and reference for meeting conductance and widely used. It is commonly
understood to be a system of parliamentary procedures and functions to promote
orderly discourse and debate, to defend the parliamentary rights of the minority, to
act on the will of the majority, and to streamline the workings of the business of the
organization. There exist some foundations of the rules,' for example: no member can
speak twice to the same issue until everyone else wishing to speak has spoken to it once;
the agenda and all committee reports are merely recommendations—when presented
to the assembly and the question is stated, debate begins and changes occur; all remarks
must be directed to the Chair. Remarks must be courteous in language and deportment;
etcetera. Examples of the rules themselves' are: Point of Privilege—pertains to noise,
personal comfort, etc. —may interrupt only if necessary; Limit Debate—closing debate
at a certain time, or limiting to a certain period of time; Reconsider—can be made
only by one on the prevailing side who has changed position or view; etcetera.

Whereas in this paper we have taken other starting points for the initial meeting
protocol, and the type of meetings (small, 4 participants, brief) does not necessarily
need such heavy machinery as Robert’s rules, it is clear that for elaborating on our work
and extending our approach (e.g., applying to other types of meetings), consideration
of the rules is necessary. Accordingly, we will do so in future extensions of the work
described here.

! http://www.robertsrules.org

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 291

3.2.2 Overall dynamic properties

At the level of the overall organization (which in this case is the meeting as a whole) a
number of organization properties can be identified. As an example the following prop-
erty expresses that no two participants speak at the same time. In this and the following
properties, communicates_from_to (p, g, x, y) denotes that p communicates to g the
communicative act x with the content y. For this paper, we consider two types of com-
municative acts, mainly inform and declare. Only when the communicative act x is of
type declare, then the receiver q is dropped meaning that the message is sent to every-
one. For the sake of simplicity, we assume that messages always reach their destination.

OP1

Informal

During the meeting only one Participant is speaking at a time.
Semiformal

At any point in time,

if any participant is speaking,

then all other participants are not speaking

Formal

vt, p, p’ :PARTICIPANT, q, q :ROLE, x, X, y, Y/

p # p’ & state(y, t, output(p)) = communicates_from_to(p, g, x, y) =
state(y, t, output(p’)) F£ communicates_from_to(p’, q', X', y')

For an overview of all organization properties specified, see Appendix A. To express
the properties of an agenda item, current agenda item and addressed agenda item
abstractions are introduced.

Abstraction: agenda item

Informal

An agenda item is an item that was declared to be an agenda item and not retracted
since then.

Semiformal

Item i is an agenda item if at some point in time it was declared to be so,

and since then it was not declared that it is not an agenda item

Formal

agenda_item_at(y, i, t) =

3t < t, m:CHAIR

state(y, t, output(m)) = communicates_from_to(m, declare, agenda_item(i))

V't < t'< t => state(y, t’, output(m)) F£ communicates_from_to(m, declare,
not_agenda_item(i))

Abstraction: agenda item

Informal

A current agenda item is one that was opened but not yet closed.
Semiformal

An agenda item is a current item if and only if

Some time ago the Chairperson declared that item to be the current item
And since then the Chairperson did not declare the item closed.

@ Springer

292 C. Jonker et al.

Formal

current_agenda_item_at(y, i, t) =

Vm:CHAIR, t' <t

state(y, t/, output(m)) &= communicates_from_to(m, declare, opened(i)) &

V' [t < t’ <t = state(y, t”, output(m)) |#£ communicates_from_to(m, declare,
closed(i))]

Abstraction: addressed agenda item

Informal

An agenda item has been addressed if it was opened and closed during the meeting.

Semiformal

An agenda item has been addressed if and only if for every time point that the chair-
person has opened the item, at a later time point she declared the item closed

Formal

addressed_agenda_item_at(y, i, t) = Vm:CHAIR

3t1<t state(y, t1, output(m)) |: communicates_from_to(m, declare, opened(i)) &

Vi2<t state(y, t2, output(m)) = communicates_from_to(m, declare, opened(i)) = 3t3

t2<t3<t &

state(y, t3, output(m)) = communicates_from_to(m, declare, closed(i))

3.2.3 Role interaction properties: The generic meeting protocol

A number of role interaction properties have been specified to define a generic
interaction protocol for a meeting. For an overview, see Appendix B. Two examples
are the following.

RI1 If the Chairperson generates a question (which implies a permission to speak) to
a Participant, then a little time later the Participant generates an answer.

Formal

VYm:CHAIR, p:PARTICIPANT Vt, i

[state(y, t, output(m)) = communicates_from_to(m, p, request, i)]

=

at’ > t, a:act,x [state(y, t', output(p)) = communicates_from_to(p, m, a, x) &
is_in_context(X,i)

RI2 If a Participant requests to add an item to the agenda,

then the Chairperson communicates this to all Participants.
Formal
Vm:CHAIR, p:PARTICIPANT Vt
state(y, t, output(p)) = communicates_from_to(p, m, request, agenda_item(i)))
=
3t’ > t state(y, t', output(m)) = communicates_from_to(m, declare, agenda_item(i)))
Notice that it is easy to add temporal constraints to these properties to denote that the
property has to be fulfilled in a predefined number of seconds. For simplicity this has
been left out.

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 293

4 From protocol to simulation

We describe the main steps how we generate a simulation trace from a given protocol
specification.

1. In our terminology, a meeting protocol consists of a number of role interaction
properties (RI) that describe the interactions between different roles in a meeting.
Some example RI properties are shown above in Section 3.2.3 and a complete
list has been included in Appendix B. These properties are basically relationships
between events, specifying that if a happens for time duration ¢, then b happens
with time duration ¢’ with some maximal time interval A between the intervals ¢
and t'. These properties are deterministic with respect to time duration ¢ and ¢’ (i.e.,
these do not change during a simulation run); however, stochastic values may be
used for time interval A. (For the examples included in this paper, the time intervals
were also deterministic.)

2. Some initial conditions are given. A simple initial condition in this context may be
that the meeting is opened by the chairperson.

3. The protocol specification together with the initial conditions is executed in a logic-
based simulation environment (Fasli, 2003; Bosse et al., 2005). The RI properties
are implemented as executable temporal rules, forming a kind of temporal rule-
base, whereby the initial conditions function as the initial events that start off the
simulation.

4. The output of the simulation is a chronological series of events, called a trace. A
trace describes which properties related to the protocol hold at each time point.
Examples of traces can be found below in Tables 1, 2 and 3.

The organization properties (OP) can then be checked against these traces in a verifi-
cation software environment. For example, one may check if it is indeed true that in
some generated trace, no two participants speak at the same time (OP1). We use the
verification tool below to check whether some given organization properties hold for
some generated trace; based on such an analysis we revise the protocol (i.e., extend
the RIs with an exception handling mechanism) such that the properties hold. We
iteratively repeat this process until we have a satisfying protocol that agrees with the
meetings that we have observed and that meets the organization properties.

It is important to notice that a generated trace thus highly depends on a single
protocol specification (and the given initial conditions). However, it is expected that
the process of acquiring a ‘good’ protocol will involve enough traces of observed
meetings such that a sufficient number of traces out of all possible traces will be
covered.

5 Example trace of a simulated meeting based on the generic meeting
protocol

The simulations of interest are generated using a logic-based simulation environment.
Using this environment, executable temporal rules are specified so that the simulation
environment can generate a trace. These executable temporal rules consist of rules
that fire based on the current status of the world, without regard to the past. This

@ Springer

C. Jonker et al.

Simulation trace of a meeting that follows the generic protocol

hair la_being_discussed J
being_di d(group_1) 1
being_di digroup_2) 4
intermal{chair|being_discussed(group_3) i
internalichair)|being_discussed(group_4) 1
internal(chair)|being_discussedigroup_5) | i S—

outputichair))
output{chair)
output(chair)
outputichair))

Jbeing_d

communi
communi
[communi

dischedule) i =1
internal{pl)|wants_to_speak_about(pl. schedule)
internal{p3 jfhas_input_for(p3, group_4)

cates_from_todchair, declare,
cates_from_to{chair, declare,
cates_from_to(chair, declare.

icates_from_to{chair, declare,

outputichair))
output{chair

communi

cates_from_to{chair, declare,
_from_todchair, declare,

output(chair)
output{chair)

communi
communi

cates_from_to(chair, declare,
cates_from_toichair, declare,

icates_from_to{chair, declare,

outputichair))

outputichair),
outputichair)

icates_from_to{chair, declare,
icates_from_to{chair, declare,

output{chair)
outputichair)
outputichair)

communi
communi

es_from_to{chair, declare,
cates_from_to{chair, declare,

icates_from_to{chair, declare,

outputichair)

jcommuni

cates_from_toichair, declare,

outputichair)
output{chair

icates_from_to{chair, declare,

_from_to{chair, declare,

« {chair)

_from_ted{chair, declare,

output(chair)

icates_from_to{chair, declare,

outputichair)

icates_from_to{chair, declare,

meeting_closed)
meeting_opened)
other_items)
agenda_item{group_1))
agenda_itemigroup_2))
agenda_item{group_3))
agenda_itemigroup_4 1)
agenda_itemi{group_5))
agenda_item(schedule))
closedigroup_11)
closed(group_2))
closedigroup_3))
closedigroup_4))
closedigroup_5))
closedischedule))
last_comments{group_1))
last_comments{group_2))
last_comments{ group_3))
last_commentsi group_4))

last_comments{group_5))
hedule)) i -

outputichairjcommunicates_from_to{chair, declare, last_
outputichairijcommunicates_from_to{chair, declare. newitem(schedule)) 1 t
output(chairjjcommunicates_from_to{chair, declare, openedigroup_1)) 1
outputichairifcommuni _from_to(chair, declare, openedigroup_2)) 1 B
output(chairijcommunicates_from_to(chair, declare, openedigroup_3))
output(chair)jcommunicates_from_to(chair, declare., openedigroup_4)) T
output(chair)jcommunicates_from_to{chair, declare. openedigroup_5)) 1
output(chairjjcommunicates_from_to{chair, declare. opened(schedule)) It
output(chairjjcommunicates_from_to(chair, declare, planned_end_time(120))
output(chair)lcommunicates_from_to(chair, declare, planned_start_time(1))
outputichair)jcommunicates_from_to{chair, pl, request, group_1)
outputichairifcommunicates_from_toichair, pl, request, group_2)
output(chairjjcommunicates_from_to{chair, pl, request, schedule)
outputichair) i _from_tolchair, p2, request, group_3)

put{chair _from_to{chair, p2, request, group_4)
outputichairifcommunicates_from_toichair, p3, request, group_5)
outputipl Jeommunicates_from_toipl, chair, inform, group_1)
output(pl jeommunicates_from_to(pl. chair, inform, group_2)
outputipl e icates_from_to(pl, chair, inform, schedule) o
output(p Jeommunicates_from_toipl. chair, request, schedule)
output{ p2 Jeommunicates_from_to(p2, nform, group_3)
output(p2 Hec icates_from_to(p2, L inform, group_4)
output{p2 icates_from_to(p2, chair, stammer, group_3)
outpup2 icates_from_to(p2, cha tammer, group_4) T
outputp3 e icates_from_to(p3, chair, inform, group_4)
output(p3jeommunicates_from_toip3. chair, inform, group_3)

Time 0 20 40 60 B0 100 120

trace describes which properties related to the protocol hold at each time point. The
generated traces can then be analyzed with an automated logic-based checker. This
checker takes as input a property of interest about the trace and logically validates the
property by the trace. If the property holds in the trace, the checker outputs success
otherwise it outputs fail.

‘We consider a simulation of an example meeting on the topic of study groups. These
simulations consist of one chairperson (referred to as chair) and three participants (re-
ferred to as p1, p2, and p3). The agenda items are about particular study groups, hence
named as group_1, group_2, and so on. For each agenda item one of the participants is
the contact person, who is asked to speak if the agenda item is opened.

The simulation discussed here is based on the formal specification of the generic
meeting protocol, which was developed based on the meeting guidelines discussed

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 295

Table 2

The transition from informal statements to formal states

Informal description

Formal state

[N

NeRieLREN BeN

12
13
14
15

16
17
18
19

20
21
22
23

24

25
26
27
28
29
30

31
32
33

C: Let’s begin in a minute
C: Let’s try to finish by 5’0 clock

C: We will talk about the regular
agenda

C: First, talk about group_1

C: Mike, any inputs for group_1

Mike gives an explanation on
group_1

C: OK, fine.

C: Group-2

C: Mike, any inputs for group_2

Mike gives an explanation on
group_2

Mike complains about lecture
notes

C: This is not the right time for
that.

C: Let’s move on

C: Group_3

C: Laurie, any inputs for group_3
Laurie explains with frequent
stops.

C: Let’s move on

C: Group_4

C: Laurie, any inputs for group_4
Laurie explains with frequent
stops.

C: Let’s move on

C: Group_5

C: Tim, any inputs for group_5
Tim speaks more on group_4

C: We talked enough on group_4

C: Group_5

C: Tim, any inputs for group_5
Tim speaks on group_5

C: We are done with the agenda
M: I have a comment on schedule
C: OK

Mike makes a comment
C: OK, we are done now.
C: Same time, next week

proposed_begin_time(1)

communicates_from_to(chair, declare, meeting_opened)
proposed_end_time(120)

communicates_from_to(chair, declare, agenda_item (group_1)
communicates_from_to(chair, declare, agenda_item(group_2)
communicates_from_to(chair, declare, agenda_item(group_3)
communicates_from_to(chair, declare, agenda_item(group_4)
communicates_from_to(chair, declare, agenda_item(group_5)
communicates_from_to(chair, declare, open(group_1))
communicates_from_to(chair, p1, request, group_1)
communicates_from_to(p1, chair, inform, group_1)

communicates_from_to(chair, declare, close(group-1))
communicates_from_to(chair, declare, open(group-2))
communicates_from_to(chair, pl, request, group_2)
communicates_from_to(p1, chair, inform, group_2)

communicates_from_to(p1, chair, inform, notes)
communicates_from_to(chair, p1, revoke, notes)

communicates_from_to(chair, declare, close(group-2))
communicates_from_to(chair, declare, open(group_3))
communicates_from_to(chair, p2, request, group_3)
communicates_from_to(p2, chair, inform, group_3)
communicates_from_to(p2, chair, stammer, group_3)
communicates_from_to(p3, p2, complete, group_3)
communicates_from_to(chair, declare, close(group_-3))
communicates_from_to(chair, declare, open(group_4))
communicates_from_to(chair, p2, request, group_4)
communicates_from_to(p2, chair, inform, group_4)
communicates_from_to(p2, chair, stammer, group_4)
communicates_from_to(p3, p2, complete, group_4)
communicates_from_to(chair, declare, close(group_4))
communicates_from_to(chair, declare, open(group_5))
communicates_from_to(chair, p2, request, group_5)
communicates_from_to(p3, chair, inform, group_4)
communicates_from_to(chair, declare, open(group_4))
communicates_from_to(chair, p3, revoke, group_4)
communicates_from_to(chair, declare, close(group_4))
communicates_from_to(chair, declare, open(group_5))
communicates_from_to(chair, p2, request, group_5)
communicates_from_to(p3, chair, inform, group_5)
communicates_from_to(chair, declare, close(group_5))
communicates_from_to(p1, chair, request, schedule)
communicates_from_to(chair, declare, agenda_item
(schedule))

communicates_from_to(chair, p1, request, schedule)
communicates_from_to(p1, chair, inform, schedule)
communicates_from_to(chair, declare, close(schedule))
communicates_from_to(chair, declare, meeting_closed)

@ Springer

296

C. Jonker et al.

above. The simulation follows the protocol but here we give a brief overview of the
trace that is shown in Table 1. The left side of the table lists the predicates used. The
right side of the table shows the timeline. A predicate is true over a period of time
if there is a bar above the time line; otherwise the predicate is false. The simulation
starts by the chairperson declaring the desired end time (proposed_end_time) for the
meeting. Next, the chairperson announces the agenda items one by one (agenda_item).
Next, the chairperson asks for further additions to the agenda. Participant pl suggests
anew item (schedule), which is also added to the agenda. Once the agenda is finalized,
the chairperson opens the first item (group_1) for discussions. The chairperson requests
information from the participant who is likely to have input on the current agenda item.
After this participant is done speaking, the chairperson asks the other participants to
see if they have further information for the topic (last_.comments). Since no participant
has further input on the agenda item (group-1), the chairperson closes the agenda item
and opens the second item. This procedure repeats itself until the agenda item is

Table 3 Simulation trace based on the refined protocol

internal(chair)fagends
internalichair)|being_
internalichair)|being_
internal(chair)|being_
internalichair)|being_s
internalichair)|being_

ding_discussed

output{chair)|
output(chair)
outputichair)
output(chair)
output{chair)
output(chair)
outputichair)
output(chair)|
output(chair)

outputichair)|e
outputichair)|e

internalichair)[heing_disc sedischedule)

outputichair)ec icat om_to(chair, declare,
outputichair)|communica rom_tofchair, declare,
output(chairljcommunicates_from_to(chair, declare,
outputichairjjcommunicates_from Il![l.lldll’ declare,
outputichair)jcommunicates_| r, declare,
output(chairjjcommunicates_| . declare,
outputichair)communicates_ ir, declare,
outputichaircommunic: . declare
outputichair)jcommunic _from_to(chair, declare,
outputichair)communicates_from_tofchair, declare,
outputichair)communicates_from_to(chair, declane,
outputichair)communicates_from_tofchair, declare,
outputichair)lcommunicates_from_to(chair, declare,
outputichair)communicates_from_tofchair, declare,
outputichair)communicates_from_to(chair, declare,
output(chair) i from_to(chair, declare,

meeting_closed)
meeting_opened)
agenda_itemigroup_1))
agenda_iemigroup_2))
agenda_emigroup_3))
agenda_item(group_4))
agenda_item(group_5))

closedigroup_1))
closed(group_2))
closed{group_3))
closed(group_4))
closed(group_3))
closedischedule))
openedigroup_1))
opened{group_2))

. apened(group_3))
. opened{group_4))

planned_end_time(120))

planned_stan_time(1))

communicates_from_to(chair, declare. opened{group_5))
communicates_{rom_toichair, declare, opened(schedule))
communicates_{rom_tofchair, declare,
communicates_{rom_to(chair, declare.
communicates_from_tochair, pl, request. group_1)
communicates_from_toichair, pl, request, group_2)
communicates_from_tofchair, pl, request, schedule)
communicates_from_to(chair, pl, revoke, notes)
communicates_from_to(chair, p2, request, group_3)

agenda_itemischedule))

output(chair)le
output(chair e
outputip !

uulpultc!winwn\municu! _

_from_toichair,

output(pl)

_from_to{pl, chair,
_from_to{pl, chair,

2, request, group_4)
p\ requoest, group_5)
p3. revoke, group_4)
inform, group_1)
inform, group_2)
inform. notes)

nulpulthJLummumulu from_to{pl, chair,

output(pl)
outputipl e

chair,
chair,

_from_to(pl,

oulput(p2

output(p2)jcommunicat
output(p2jfcommunicat

icates_from_to(pl,
_from_toip2,
_from_to{p2.

chair,
chair,
chair,

output(p2)fc

_from m{pZ,

output(p3)feommunicat

_from_to(p2

inform, schedule)
request, schedule)
inform. group_3)
inform, group_4)
stammer, group_3)
2, chair, stammer, group_4)

output(p3) uummuniL
oulpnl:px. I

from_to{p3, chair,
from_todp3, chair,

@ Springer

|_output(p3)jcommunicates_fro

inform, group_4)
inform, group_5)

_from lmp! p2. complete, group_3)
from_to(p3, p2, complete, group_4)

fime

=
T
=
ey
—
a
=
2
=t
=
)
a
.
T
n
)
R
7
P B
—
H:
a
.
et
i
™ .
=
1
-’
2
d #t
=
a
0 20 40 [id] 80

(Continued on next page)

Analysis of meeting protocols by formalisation, simulation, and verification

297

Table 3 (Continued) infernalpt)|has_input_fortp1, group_1)
internaipt)jhas_input_for(p1, group_2)
inemnalpt)|has_input_kor(p, group_5)
internap2)|has_input_lor(p2, group_2)
interna¥p2)|has_input_for(p2, group_5)
Interna¥p3)|has_input_lon(p3, group_3).
internalp3)|has_input_on{p3, group_5):
Intemnalps)|has_input_fonps, group_2)
internal{ps)|has_input_for(ps, group_5)
internalpB)has_input_forp6, group_3)
internalip?)jhas_input_lor{p7, group_5)
internal{p8)has_input_for{p8, group_3)
internal{p8)|has_input_fonpé, group_5).

outputichak)jcommunicates_from_to{chalr, declars, meeting_closed)
cutputichak)jcommunicales_ram_to{chak, declare, meeling_opened)
outputichair) communicates_from_to(chalr, dectare, new_meeling_date)

outpulchair)jcommunicates_from_lojchakr, declare, agenda_ 1
outpulchairjcommunicates_from_o{chalr, declare, agenda_ _2)
outpul{chair)jcommunicates_from_loichar, declare, agenda_| _3)
oulpuiichair)jcommunicates_from_to{chal, declare, agenda_ _4))
outpuchair)jcommunicates_from_lochair, declere, agenda_| _S))

outpulichair)|communicates_from_to(chair, declare, closed 1)
outputichair)|communicates_from_lo(chair, declare, 2
outputichain|communicates _from_to{chair, declare, (aroup_2)).
outputichain|communicates_from_ta{chair, declare,)
oulpulichair) jpommunicates_from_to(chair, declars, last s _2)
oulput(chair)jcommunicates_from_to{chalr, declare, last_ _2)
outputichairjcommunicates_from_to{chalr, declare, 1))
outpulichair|communicates_from_to(chalr, declare, group_2))
autpulichaircommunicates_from_to{chalr, declare,]
oulputichair]communicates_from_to{chalr, declare, il _5))

output{chairjcommunicates_from_to{chair, declare, planned_end_time(140))
cutput{chair)jcommunicates_from_to{chalr, declare, planned_start_time(1))
cutputichakjjcommunicales_from_tojchair, group_1)

I _from_lo(chair, oroup_4)
cutpu¥chair)lcommunicates_from_to(chair, p1, request, agenda_ilems)
outpul{chairjcommunicales_from_to{chair, p1, request, group_1)
outputichair}communicates_from_to(chair, p1, request, group_5).
outpulchair}jcommunicates_from_to{chair, p2, request, agenda_items)
outpubizhairjcommunicates_from_to{chalr, p2, request, group_2)
oulpul(chairycommunicales_from_to{chalr, p2, request, group_5)
culpulichairjcmmunicates_from_to{chair, p3, clarily, group_5)
cutpuchair)jcommunicates_from_to(chakr, p3, request, agenda_flems)
outpub{chair}jcommunicales_from_to(chair, p3, request, group_3)
output{chairj communicales_from_to(chair, p3, request, group_5)
outputichair)jcommunicates_{rom_to{chak, p4, inform, group_5).
cutpuichair)jcommunicates_from_to{chalr, pd, request, agenda_items)
culputichairjcommunicates_from_to{chair, ps, clarily, group_5)
oulputichainjcommunicates_from_to{chak, ps, inform, group_3)
outpulichair)jcommunicates_from_to(chair, pS, revoke, group.3)
outpubichair communicales_from_to(chair, p7, request, group_5)
outpub{chair} communicales_from_to(chair, p8, request, group_5)
output{pijcommunicates_from_to{p1, chak, Inform, group_2)
oulput{pijcommunicates_from_to{p1, chak, Inform, group_5)
outputipt)jcommunicates_from_to{pd, chair, object, group_1)
oulput(p1)jcommunicates_lrom_lolp1, chair, request, group_1)
outpul{p2jcommunicates_from_to{p2, chair, inform, group_2)
output{p2}communicates_from_to{p2, chair, inform, group_5)
oulpui{p2)jcommunicates_from_to{p2, chair, request, group_2)
outpul(p2) communicates_from_to(p2, p1, request, group_1).
outpul{p2)jcommunicales_from_to{p2, ps, inform, group_5).
outpul{pdfcommunicates_lrom_to(p3, char, inform, group_3)
oulpul{p3jcommunicales_lrom_te(p3, chair, Inform, group_3)
output{p3jcommunicates_from_to{p3, chair, inform, group_5)
output(p3)jcommunicates_from_to{p3, chair, request, group_3)
output{p3jcommunicates_from_io{p3, chair, request, new_meeling_dale).
oulpul(pd)jcommunicates_from_to(pd, chalr, request, group_4).
outpul{pd) jcommunicales_from_to(p4, p7, request, group_S)
oulpul{ps)communicates_from_to{ps, chakr, inform, group_2)
oulput{pS§communicates_from_to(p5, chair, inform, group_3)
output{p5)jcommunicates_from_to{p5, chair, object, group_4)
oulput{pE)jcommunicates_{rom_to(p5, chair, request, agenda_| 1_5))

-

L

outpul{pS)jcommunicates_from_to{p5, p2, inform, group_1)
outpul(ps) fcommunicates_from_to(ps, p2, request, group_S)
culput{p)jcommunicates_from_lo(pB, chair, clarily, group_3).
oulpul{psjcommunicates_from_to{pE, chair, inform, group_3)
oulpul{p? joommunicates_from_to{p7, chair, inform, group_5)
oulput{p8)§communicates_from_tof{pd, chair, inform, group_3}
oulput{pd)jcommunicates_from_to{p8, chakr, inform, group_5).
time

@ Springer

298 C. Jonker et al.

group_4. On this agenda item, when the chairperson asks for other comments from the
participants, participant p3 provides additional comments. Later the meeting continues
as before. After the last agenda item is discussed, the chairperson declares that the
meeting is closed.

From a broad overview, the simulation described above has some differences from
our observations of real meetings. For this reason, we observed a real meeting and
obtained data on how it was carried out. These data were analyzed in some depth.

6 An empirical trace of a real meeting

An important part of the work presented here is based on empirical data. This data
was obtained through carefully observing a meeting in the Artificial Intelligence De-
partment of the Vrije Universiteit Amsterdam. Similar to the observation techniques
explained elsewhere (Serman and Basili, 1998), the observer sat apart from the meet-
ing participants and the chair. Two of the participants and the chair knew why the
observant was present, while a third participant did not.

The observer wrote down the conversations of the meeting in an informal language.
Later these informal texts were formalized to analyze and reason about the meeting.
Table 2 gives an overview of these conversations. The left column in the table provides
the informal text and the right column gives the formalized states.

We briefly explain the differences from the simulated meeting trace in Section 5.
The trace again starts with the chairperson announcing a desired end time for the
meeting (proposed_end_time). The chairperson announces the agenda items but
does not explicitly ask for additions to the agenda. After the chair opens an agenda item
and receives input on the item, she closes the item when she sees fit. Compared to the
generic meeting protocol described in Section 3.3.2, the difference here is that the chair
does not explicitly ask for further input from the participants. Complementing this is a
change in the role behavior of participants. Whereas in the meeting simulated according
to the generic protocol (Section 5), a participant speaks only when permission is given,
in the real meeting participants take the initiative to speak up without being asked.
The interesting question then is how these different behaviors affect the outcome of
the meetings? Do the desired properties of interest hold for both cases? Does one trace
have advantages over the other one? We discuss these questions next.

7 Formal analysis of simulated trace and empirical trace

We analyze the traces generated by these simulations in terms of the organization
properties defined above. To do so, the first eight organization properties (Appendix
A) have been entered into the checker and automatically checked against each trace.

7.1 Analysis of the simulated meeting

The meeting simulated according to the generic protocol (Section 5) satisfies the first
organization property (OP1), which states that no two participants speak at the same
time. This is intuitive since participants speak only when given permission. In this

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 299

simulation, the chair ensures that only one participant has the permission to speak.
Hence, the property holds. The second property (OP2) is on the agenda items that
were talked. The role interaction RI10 specifies that once an agenda item is closed,
the chair chooses a new item from the agenda. Hence, it is always the case that the
chairperson will open an existing agenda item. This explains why OP2 holds for this
trace as well.

OP3 is satisfied for this trace because before closing each topic the chairperson asks
for further comments from the participants. Hence, anyone who declares an intention
to speak gets a chance to speak. Organization property OP4 states that the meeting is
eventually closed. This will always hold for a meeting based on the generic meeting
protocol as long as the number of items on the agenda as well as the duration of
comments on the items are finite. OP5 ensures that no meeting ends prematurely; that
is if the meeting ends, then all agenda items have been discussed. In the specification
of the meeting, the only way to close a meeting is when the meeting items have been
discussed. OP6 states that no two items are open at the same time. This holds for
this trace again due to role interaction RI10. A chairperson will open a new agenda
item only if the previous item is closed. Organization property OP7 states that if a
participant is speaking then she is speaking on the current item. This follows from
the fact that the chairperson will only allow a participant to speak on the current item
(RI3). Organization property (OPS8) states that the meeting starts and ends on time.
This property holds for this trace since the meeting starts with declarations of the start
and end times of the meeting and the meeting takes place between these time points.
However, in general this property may have conflicts with OP3.

7.2 Analysis of the empirical data of the real meeting

While the generic meeting protocol obeys the organization properties, the real meeting
trace violates some of them. To avoid repetition, only the properties that are violated
are discussed here.

The first interesting situation happens during the discussion of item group_3 (see
lines 13—16). The chairperson requests information from p2 on the item. The par-
ticipant p2 speaks with short breaks (stammer), which influences one of the other
participants (p3) to help p2 with his speech (complete). Notice that this is not part
of the generic protocol and in general no participant has to help other participants.
To be able to generate this behavior, we added an extra role interaction property to
the simulation so that participant p3 would help p2. Participant p3’s helping p2 is
constructive in that it allows p2 to formulate his thoughts. Ironically, this situation
disobeys one of the desired organization properties of meetings; namely OP1 which
states that no two participants at a meeting should speak at the same time.

After chairperson requests information from a participant, the participant provides
the required information. In some cases, it could also be the case that the participant
provides information that is not relevant to the request of the chairperson. One such
example happens during the discussion of item group_2 (see lines 7—-12). After giving
feedback on group_2, participant p1 starts speaking on a topic (notes) that is out of
the scope of group_2. This is an example of impromptu interruption from participants
that sometimes happens. This behavior of p1 causes the violation of the organization

@ Springer

300 C. Jonker et al.

property OP7, which says that participants speak on current agenda items only. While
this behavior of the participant is not part of the generic interaction protocol, a method
for recovering from such a situation is followed in the meeting. Hence, the chairper-
son can first revoke the permission from participant p1 and then continue with the
protocol.

Contrary to the generic protocol, in this simulation the chairperson does not request
further input from other participants before closing an agenda item. One interesting
consequence is that after the discussion of item group_4, the chairperson closes the
agenda item (line 20). However, there is still a participant who is willing to speak
more on the item. Hence, this participant (participant p3) continues speaking about
group_4, even though the item has been closed and a new item has been opened (line
23). This point in time is interesting because in reality both agenda items are current.
Item group_5 is current because it has been declared as open and not closed by the
chairperson. However, group_4 is also current, since one participant is talking about
this item. Hence, another organization property, property OP6 is violated since there
are two current items at the same time. However, this failing of this property does not
halt the system. The meeting handles this exception in the sense that the chairperson
in this case lets the participant finish and then re-closes the item group_4 and reopens
the item group_5 (in lines 24 and 25).

8 Refined protocol and simulation

As shown in the analysis in Section 7, a real meeting (such as the one described in
Section 6) may deviate from a meeting correctly following the protocol (such as the
simulated meeting in Section 5) in the following ways:

e sometimes, by exception, protocol properties are violated by one of the members
e strategies are employed to handle these exceptions and to put the meeting on the
right track again

One of the reasons that these exceptions occur are the fact that human agents are not
ideal and may forget things. In practice members are able to accept these shortcomings
and to recover from them. To this end a number of exception handling strategies
are used. This can be considered a more sophisticated way of working than just by
following the protocol. An interesting question is whether the generic meeting protocol
can be refined by including such exception handling strategies to provide a more robust
protocol. This question is discussed in the current section.

To experiment with a refined protocol, using the formal states given for the em-
pirical trace, a second simulation was developed, where a number of the rules for the
simulation (as used in Section 5) were adapted to reconstruct the empirical trace as
precisely as possible. The generated trace indeed closely resembles our observations of
the real meeting described in Section 6. For example, the exception of the participant
speaking on notes while the current agenda item is group_2, is now handled realisti-
cally in the simulation: the chairperson first revokes the permission from participant
p1 and then continues with the protocol. Moreover, now the simulated meeting can
also handle the exception such as a participant speaking on an already closed agenda
item i2 when the current agenda item is i1. By the addition of exception handling

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 301

strategy the chairperson returns to the earlier agenda item i2, lets the participant finish
and then recloses the item i2 and reopens the item i1. The following rules, which can
be considered part of such a refined protocol, were used to obtain this. These two rules
together constitute RI6 in Appendix B.

RI-Make current

If after a new agenda item was opened and not yet closed, a Participant speaks on an
earlier addressed agenda item, then the Chairperson closes the current agenda item
and reopens the earlier item.

Formal

Vt, i1,i2 Vm:CHAIR, p:PARTICIPANT Vy
[current_agenda_item_at((y, i2, t) &
addressed_agenda_item_at(y, i1, 1) &
state(y, t, output(p)) = communicates_from_to(p, m, inform, y) & in_context_of(i1)]
= 3t” > t state(y, t”, output(m)) = communicates_from_to(m, declare, closed(i2)) &
state(y, t”, output(m)) = communicates_from_to(m, declare, opened(i1))

RI-Revoke if necessary

If a Participant speaks on an item other than the current agenda item or any earlier
addressed agenda item, then the Chairperson revokes the Participant and asks for
additional comments on the current agenda item from the other participants.

Formal
Vi, i2 Ym:CHAIR, p:PARTICIPANT, y
[state(y, t, output(p)) = communicates_from_to(p, m, inform, y) &
not Ji1 addressed_agenda_item_at(y, i1, t) & in_context_of(y, i1)]
= 3t">t state(y, t’, output(m)) = communicates_from_to(m, p, revoke, i1) &
Vq state(y, t”’, output(m)) = communicates_from_to(m, q, request, info_on(i1))

9 Analysis of the organizational properties for the third trace

Once, we refined the protocol we now need to verify how this protocol handles another
real meeting. For this reason, we examine another real meeting. The trace for this
meeting is given above. The organization properties that were mentioned above are
also checked against this third trace. We discuss the analysis of the trace in relation to
these organization properties. OP1 fails for this trace, as it did for the previous trace.
Sometimes it is difficult to ensure that participants do not speak at the same time. For
this reason, we relax this organization property into a new OP1-weak property, which
states that no two participants speak at the same time for more than five seconds.
The trace satisfies this new property. The OP2 property holds for the trace. That is,
if the chair officially opens up a discussion, this is always one of the agenda items.
OP3 fails for the trace. One of the participants (p1 in the trace) requests item group_1.
Later, when the item is opened for discussion, objects to the item as irrelevant for the
current meeting and requests it to be scheduled for a later meeting. Even though this

@ Springer

302 C. Jonker et al.

participant has input for the item, the meeting ends without him expressing his input.
OP4 is satisfied for the trace, since the meeting is eventually closed. OPS fails for this
trace. OP5 states that all agenda items are addressed by discussing them. However,
in this trace, an agenda item is objected by a participant, which causes the item to be
removed from the agenda. In this case, the item has been postponed to a later meeting.
To handle this situation, we propose a weaker version of OP5, OP5-weak, which states
that an agenda item is addressed if it has been discussed or if it has been postponed to
another meeting. OP6 holds for this meeting. Putting an additional time limit ensures
that short conflicts do not interrupt the flow of the meeting as long as the meeting can
continue its operation as before. OP7 states that the meetings start and end on time,
which holds for this trace.

10 Analysis of role interactions for the second and the third traces

Appendix B gives a list of role interactions for our meeting protocol. The interactions
that are marked as RI are those originally thought to be the role interactions. However,
as new traces were generated, some of these proposed role interactions were no longer
sufficient to generate the interactions that took place in the traces. Sometimes, a role
interaction was too restrictive and sometimes a new role interaction was needed to
handle cases that were not thought of initially. For these reasons, the role interactions
were coupled with more interactions that are labeled as exception handling interac-
tions. These exception-handling interactions are meant to be used only if the main
role interaction fails for a reason. This section analyzes how the traces accommodate
these role interactions.

Both traces satisfy RI1 since when the chairperson requests some information on a
topic from a particular participant, the participant always provides some information.
In Trace 2, the supplied information is always in the type of an inform, meaning that
the participant gives information on the item. For Trace 3, sometimes the provided
information is meta-level in that the participants do no talk on the item but on how to
process the item; such as suggesting to postpone an item. However, in both traces there
is always an answer from the participant. Even though this is the case, it is not hard to
envision a meeting where a participant does not respond to a question. For such cases,
an interaction property for exception handling is added. This new interaction property
allows a chairperson to direct her query to a second participant if the first participant
does not speak within a certain time frame.

Both traces satisfy RI2. If a participant requests an agenda item, then the item is
added and communicated to all participants. This interaction property holds because
no one objects to agenda item requests before they are added. If this had not been the
case, RI2 would have failed and we would need an exception handling property to
handle the recovery. Whereas no objections take place before an item is added to the
agenda, in Trace 3 an objection takes place after an agenda item is added to the agenda.
To deal with such cases, RI3 is added to the protocol. This interaction states that if a
participant objects to an agenda item, then the chairperson has the freedom to choose
between rejecting the objection or accepting the objection and postponing the item.

In the initial protocol, the role interaction property RI4 stated that if a participant
is speaking, then nobody else should be speaking. However, this is violated in Trace 2

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 303

as was extensively described in the discussion of OP1. For this reason, the interaction
property is weakened so that it now states that no two participants speak at the same
time for a small time frame. This weakened role interaction property is also satisfied
in Trace 3.

Trace 2 violates RIS, which states that participants only speak on current agenda
items. This requirement is violated because at one point in the trace, a participant
continues on speaking on an item that is closed. To handle this exception, we add
a role interaction property that states that if the item does not become current (by
the chairperson closing the current and opening again the previous item), then the
participant will stop speaking in a certain time frame. This weaker requirement is
also satisfied by Trace 3.

RI7 states that if a participant is revoked permission to speak, then she will do so
in a short time frame. This is satisfied by both traces. In certain traces, the chairperson
might end up revoking the permission more than once to make the participant stop
speaking. R10 states that if no participant has further input on an item, then the
chairperson closes the item. This is satisfied in both traces. Similarly, R11 states that
if a participant has more input on the item, then the chairperson will open a new round
for last comments. This is also satisfied in both traces. Note that this is not the only
way to close an item, but a fair way to do so. That is, an agenda item can be closed
without asking for further input from the participants. However, if R10 and R11 are
forced to be the only ways to close an item, then a fairness property is enforced. This
way anyone, who has something to say on an agenda item, gets a chance to do so.

R10 implies that all agenda items in the meeting will be discussed. This property
is satisfied by Trace 2. However, the interaction property has to be revised for Trace
3, since in Trace 3 an agenda item is postponed to another meeting. The revision
suggests that all agenda items are treated in a meeting, either by discussing it or
by postponing it to another meeting. The exception handling interaction property
again serves this purpose. The weaker intersection property states that if some agenda
items are not opened for discussion, then they must have been postponed to another
meeting. This exception can now be handled successfully. RI11 holds for both traces.
The chairperson announces an end-time for the meeting during the meeting. Similarly,
after the proposed end-time, the chairperson opens an item. Thus, RI12 also holds for
both traces. RI13 holds for Trace 2. The chair first proposed an end-time and then lists
the items. However, R13 fails for Trace 3 since the chairperson announces an end-
time based on the agenda (i.e., after stating agenda items). For this reason, another
property is added. This property weakens the temporal dependency and states that the
chairperson announces the agenda items at some point during the meeting. RI15 is
satisfied by both traces and both meetings are finally closed.

11 Discussion

This paper formalizes a generic role interaction protocol for meetings using the logical
language TTL; cf. (Jonker and Treur, 2002). This protocol adheres to several meeting
guidelines. In addition, using TTL, desirable properties for meetings can be formally
represented. An important advantage of formalizing the protocol with an executable
subset of TTL is that the protocol can be simulated. The simulation yields a trace in

@ Springer

304 C. Jonker et al.

which properties of protocols can be checked. Next, this simulated trace is compared
to an emprical trace of a meeting. Based on deviations revealed in this comparison,
we refine the existing protocol to capture more human-like interactions so that the
protocol can be simulated to produce a trace that is identical to that of the emprical
trace. Ultimately, we aim to have a simulation that captures the processes underlying
how meetings are carried out and use these processes as (formal) meeting protocols.

Croston and Goulding present one of the earlier empirical works on meeting effec-
tiveness (1966). Croston and Goulding develop a meeting analysis kit that is used in
different departments of a company by the participants of the meeting. The kit enables
the participants to reevaluate a past meeting by analyzing the topics discussed, the
time spent on each topic, and so on. Based on the analysis from different meetings,
Croston and Goulding observe that the starting a meeting with a formal agenda and
better chairing of the meetings increase the effectiveness of meetings. The meeting
protocol that we propose respects both of these observations. Further, we explicitly
formalize the notion of better chairing a meeting.

Serman and Basili study various properties of software inspection meetings in a
software development project (1998). Similar to the generation of the empirical trace
here, Serman and Basili collect data by attending inspection meetings as an observant.
They later analyze their data statistically to uncover causal relations between various
properties of the meeting, such as effectiveness, efficiency, or meeting length. While
Serman and Basili discover interesting relations, they do not provide a formal protocol
of how the meetings should be carried out as we have done here. Since our study
uses simulations, we can easily adjust different behaviors of participants to see the
effect of (local) properties of participants of a meeting on the (global) properties of
the meeting as a whole.

Generally, the group-support systems help participants share data, improve com-
munication, and reach decisions. Hence, group-support systems can help increase the
efficiency of meetings. Niederman et al. study the meetings in organizations with
group-support systems (1996). Their primary focus is to show how the use of group-
support systems by facilitators affects meeting performances. Through interviews with
facilitators, Niederman et al. observe that different facilitators have different ideas on
measuring performance. However, no formal rules for identifying or bringing out
successful meetings are identified.

Given the informal literature as discussed, the work reported in the current paper
contributes some first steps in formal analysis of meetings. We show that the meet-
ing protocols that adhere to the guidelines rigidly do not necessarily resemble human
meetings, which exploit more sophisticated strategies. We study how this discrep-
ancy can be overcome by including exception handling strategies within the protocol.
Future research will address this theme further.

Appendix A: Overall organizational behavior properties

At the level of the overall organization (which in this case is the group as a whole) a
number of organization properties have been identified.

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 305

OP1: No speaking at the same time

Informal

During the meeting only one Participant is speaking at a time.
Semiformal

At any point in time,

if any participant is speaking,

then all other participants are not speaking

Formal

Vt, p, p’ :PARTICIPANT, q, ' :ROLE, x, X', y, ¥’

p # p’ & state(y, t, output(p)) = communicates_from_to(p, q, X, y) =
state(y, t, output(p’)) F£ communicates_from_to(p’, , X', y')

OP1-weak: No speaking at the same time for three seconds

Abstraction:

Informal

A participant spoke for consecutive s seconds.

Semiformal

A participant p spoke for s seconds if at some point in time she started speaking,
And since then there has not been any time when she was not speaking.
Formal

spoke(y, p, t, s) =

Vq, g :ROLE, x, X' :ACT, y, y’ m: CHAIR

' <t

state(y, t, output(m)) = communicates_from_to(p, g, x, y) & (t-t')>s &

Vt’ (' <t” < 1) = state(y, t’, output(m)) = communicates_from_to(p, q', X', y)

Informal

During the meeting only one Participant is speaking at the same time for a duration of
3 seconds

Semiformal

At any point in time,

if any participant spoke for 3 seconds,

then none of the other participants spoke for the same 3 seconds.

Formal

Vt, p, p’ :PARTICIPANT [(spoke(y, p, t, 3) & spoke(y, p/, 1, 3)) = p = p’]

oP2

Informal

During the meeting only agenda items are addressed.
Semiformal

At any point in time t,

if item i is opened

then iis an agenda item

Formal

@ Springer

306 C. Jonker et al.

Vi, 1, p, g, X, y Ym:CHAIR
state(y, t, output(m)) = communicates_from_to(m, declare, opened(i))
=> agenda_item_at(y, i, t)

OoP3

Informal

Every Participant who indicates that he has something to say on the current agenda
item will have the opportunity to speak.

Semiformal

At any point in time t,

if attime ta participant communicates that he has something to say about the current
agenda item i

then before the item was closed a later time point t’' exists such that at t' the
participant communicates something in the context of i

Formal

Vt, 12, |, p:PARTICIPANT, q:ROLE, m: CHAIR

current_agenda.item_at(y, i, t) &

state(y, t2, output(m)) = communicates_from_to(m, declare, closed(i)) =>

state(y, t, output(p)) = has_input_for(p, i) =

d <t<t2 x

state(y, t, output(p)) = communicates_from_to(p, g, inform,x)

& is_in_context_of(x, i)

The notion of being in context of is assumed a given notion.

OP4

Informal

Eventually the meeting is closed.

Semiformal

At some point in time the chairperson declares the meeting closed

Formal

VYm:CHAIR 3t state(y, t, output(m)) = communicates_from_to(m, declare, meet-
ing_closed)

OP5

Informal

If the meeting is closed, all agenda items have been addressed.

Semiformal

At any point in time,

if the meeting is declared closed,

then for any item i that was on the agenda there are earlier time points at which item i
was declared opened and closed

Formal

Vt, i, m:CHAIR

state(y, t, output(m)) = communicates_from_to(m, declare, meeting_closed) &
agenda_item_at(y, i, t) =

addressed_agenda_item_at(y, i, 1)

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 307

OP5-weak

Informal

If the meeting is closed, all agenda items have been addressed.

Semiformal

At any point in time,

if the meeting is declared closed,

then for any item i that was on the agenda there are earlier time points at which item i
was declared opened and closed or there is an earlier time point at which the item is
postponed to another meeting.

Formal

Vt, i, m:CHAIR

state(y, t, output(m)) = communicates_from_to(m, declare, meeting_closed) &
agenda_item_at(y, i, t) =

addressed_agenda_item_at(y, i, t) OR 3t' < t state(y, t, output(m)) = communi-
cates_from_to(m, postpone, agenda_item(i))

OP6

Informal

No two items are current.
Semiformal

At any point in time t,

if item i is current at t,
and item i’ is current at t,
then i=7

Formal

Vi, i, i/

current_agenda_item_at(y, i, t) & current_agenda_item_at(y, i, t) = i=1

oP7

Informal

The meeting starts and ends in time.

Semiformal

The meeting starts at the planned starting time and ends before the planned end time
Formal

VYm:CHAIR Vi1 [planned_starting_time(t1) =

state(y, t1, output(m)) = communicates_from_to(m, declare, meeting_opened)] &
Vi2, 138 state(y, 12, output(m)) E communicates_from_to(m, declare,
planned_end_time(t3)) =

Jt4 < t3 state(y, t4, output(m)) = communicates_from_to(m, declare, meeting_closed)

OoP8

Informal

Every communication in the meeting is received by everyone
Semiformal

At any point in time,

if a participant communicates something to another one,
then this communication will be received by everyone

@ Springer

308 C. Jonker et al.

Formal

Vt, p, g, q:ROLE, x, y

state(y, t, output(p)) = communicates_from_to(p, q, x, y) =
3t >t state(y, t, input(q’)) = communicates_from_to(p, q', X, y)

oP9

Informal

The secretary will make minutes of the meeting

Semiformal

if an agenda item is closed,

then notes for the minutes on this item have been made by the Secretary
Formal

Vt, i Ym:CHAIR

state(y, t, output(m)) = communicates_from_to(m, declare, closed(i)) =
state(y, t, EW) = notes_present_for_by(i, Secretary)

OP10

Informal

The internal state property of the chairperson indicating that i is being discussed holds
precisely then when i is a current agenda item

Semiformal

i 1is a current agenda item,

iff the internal state property of the chairperson that i is being discussed holds
Formal

vt, i Vm:CHAIR

current_agenda_item_at(y, i, t) <

state(y, t, internal(m)) = being_discussed(i)

Appendix B: Role interaction properties: The generic meeting protocol

The following role interaction properties define an interaction protocol for the meeting.

RI1 If the Chairperson generates a question (which implies a permission to speak) to a
Participant on an agenda item, then a little time later the Participant will start speaking
on the agenda item.

Formal

Vm:CHAIR, p:PARTICIPANT Vi, i

[state(y, t, output(m)) = communicates_from_to(m, p, request, i))]

=

at’ > t, a:ACT, x [state(y, t', output(p)) = communicates_from_to(p, m, a, x)
is_in_context_of(x,i)]

Exception Handling:

If the Participant does not generate an answer after being requested to speak within 5
seconds, Then the Chairperson requests the answer from another participant that has
not been directed the same question.

Vm:CHAIR, p:PARTICIPANT Vi, q

[state(y, t, output(m)) = communicates_from_to(m, p, request, q)) &

not 3t > t, ab:act [state(y, t, output(p)) &= communicates_from_to(p, m, b,

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 309

answer_on(a, q))) & (' —t) < 5]
=
3t” > t, r:PARTICIPANT [state(y, t’, output(m)) = communicates_from_to(m, r, request,

a)&p#1]

RI2 If a Participant requests to add an item to the agenda, then the Chairperson
communicates this to all Participants.

Formal

VYm:CHAIR, p:PARTICIPANT Vi, i

state(y, t, output(p)) = communicates_from_to(p, m, request, agenda_item(i))

=

3t’ > t state(y, t', output(m)) = communicates_from_to(m, declare, agenda_item(i))

RI3 If a participant objects the addition of an agenda item, Then the Chairperson
postpones the agenda item or makes it an agenda item.

VYm:CHAIR, p:PARTICIPANT Vt, i

state(y, t, output(p)) = communicates_from_to(p, m, object, agenda_item(i))

=

at' > t[state(y, t', output(m)) = communicates_from_to(m, postpone, agenda_item(i))
OR

state(y, t, output(m)) = communicates_from_to(m, declare, agenda_item(i))

RI4 If a participant is speaking, then nobody else is speaking.

Semiformal

At any point in time t,

if pis communicating some information,

then no other participant is communicating information.

Formal

Vt, i, p, q :ROLE, x,y, X,y

state(y, t, output(p)) = communicates_from_to(p, q, X, y)

= Vr £ p, s :ROLE state(y, t, output(r)) | communicates_from_to(r, s, X', y)

Exception Handling:
If more participants are speaking at the same time, then this happens for at most 5
seconds.

VYm:CHAIR, p,q:PARTICIPANT Vt,t' t" t”
[speaks_from_until(p, t,t') &
speaks_from_until(g,t”,t"”") &

p#d

=

t-t)<5

RIS If a participant is speaking, then she is speaking on the current item.
Semiformal

@ Springer

310 C. Jonker et al.

At any point in time t,

if attthe item i is current agenda item

and att any participant is communicating X,

then X fitsin item i

Formal

Vi, i, p, g :ROLE, x, y

current_agenda_item_at(y, i, t) &

state(y, t, output(p)) = communicates_from_to(p, q, X, y)
=>is_in_context(y, i)

RI6 If the Participant speaks on an agenda item that is not the current one, then she
will stop speaking in 5 seconds.

Vm:CHAIR, p:PARTICIPANT Vt, x, i

[state(y, t, output(p)) = communicates_from_to(p, m, inform, x) &
in_context(x,i) &

not current_agenda_item(i, t)]

=

not spoke(y, p, t + 5, 5)

Exception Handling:
If the Participant speaks on an agenda item that does not become current during her
talk

And the Participant does not stop speaking in 5 seconds
Then the chairperson will either make the agenda item current or revoke the permission
of the Participant to speak.

VYm:CHAIR, p:PARTICIPANT Vt, X, i

[state(y, t, output(p)) = communicates_from_to(p, m, inform, x) & in_context(x,i) &

not current_agenda_item(i, t) &

vt > t (' —t)<5 =[not current_agenda_item(i, t') & state(y, t’, output(p)) = communi-
cates_from_to(p, m, inform, x)]

=

It” > t [current.agenda_item(l, t”') OR state(y, t”, output(m)) &= communi-
cates_from_to(m, p, revoke, i)]

RI7 If the Chairperson revokes the permission to speak from a Participant while that
Participant is still speaking, then that Participant will stop speaking in 2 seconds.
Formal

Vi, i Vm:CHAIR, p:PARTICIPANT V x, y

state(y, t, output(m)) = communicates_from_to(m, p, revoke, i)

& state(y, t, output(p)) = communicates_from_to(p, x, y, i)

= Wx,y,Z [0 < ({-1) <2, state(y, t, output(p)) K~ communicates_from_to(p, X/,
y,2)]

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 311

Exception Handling:

If the Chairperson revokes a permission of a Participant after which the participant has
not stopped speaking,

Then the Chairperson will revoke the permission of the Participant again.

Vi, i Vm:CHAIR, p:PARTICIPANT

state(y, t, output(m)) = communicates_from_to(m, p, revoke, i) &

state(y, t, output(p)) = communicates_from_to(p, X, y, z) &

X, y', Z state(y, t+1, output(p)) = communicates_from_to(p, X, y’, Z)

=

3t > t+1, state(y, ', output(m)) = communicates_from_to(m, p, revoke, i)

RIS If the chairperson has asked for last comments and for 5 seconds after that, no
participant having information regarding the current item, puts forward their information,
and no participant raises its hand to put forward information, then the Chairperson
closes the agenda item.

Formal
Vt, i Ym:CHAIR
[3Y < t — 5, state(y, t, output(m)) &= communicates_from_to(m, request,

last_.comments(i)) &

[3—p:PARTICIPANT, 3—t", ' <t' <t &

[state(y, t’, output(p)) &= communicates_from_to(p, m, inform, i) OR

state(y, t”, output(p)) |= raises_hand(p,i) OR

state(y, t, output(m)) = communicates_from_to(m, declare, closed(ag:agenda_item))]]]
=

' > t state(y, t', output(m)) &= communicates_from_to(m, declare, closed
(ag:agenda_item))

RI9 If allinformation on the current agenda item has been exchanged and for 5 seconds
no participant has put forward information or raised his hand, then the chairperson asks
for last comments.

Formal

vtt, i Vm:CHAIR

[last_.communication_at_before(y, t, t') &

I—p:PARTICIPANT, 3—t", (' = 5) <t" <t &

[state(y, t’, output(p)) &= communicates_from_to(p, m, inform, i) OR

state(y, t”, output(p)) | raises_hand(p,i)] &

state(y, t, output(m)) F communicates_from_to(m, declare, last.comments
(ag:agenda_item))]

= " > tstate(y,t”, output(m)) = communicates_from_to(m, declare, last_ comments
(ag:agenda._item))

RI10 If the Chairperson has declared an agenda item closed, and not all items have
been treated, then the Chairperson will announce one of the remaining items as the
current item.

Formal

Vi, i Ym: CHAIR

state(y, t, output(m)) = communicates_from_to(m, declare, meeting_closed)

@ Springer

312 C. Jonker et al.

& di agenda_item_at(y, i, t) & not addressed_agenda_item_at(y, i, 1)
= Jt' > t state(y, t, output(m)) = communicates_from_to(m, declare, opened(i))

Exception Handling:

If the Chairperson closes the meeting,

Then the Chairperson has communicated to the participants that any remaining items
on the agenda are postponed.

Vi, i Vm: CHAIR

state(y, t, output(m)) = communicates_from_to(m, declare, meeting_closed)

=

Vi [agenda_item_at(y, i, t) & not addressed_agenda._item_at(y, i, t) =

3 t' <t state(y, t', output(m)) = communicates_from_to(m, postpone, agenda_item(i)]

RI11 If the Chairperson has declared the meeting opened,
then the Chairperson will announce the proposed end time.
Formal Vt, i Ym:CHAIR
state(y, t, output(m)) = communicates_from_to(m, declare, meeting_opened)
=3t > t t’ state(y, t, output(m)) = communicates_from_to(m, declare,
planned_end_time(t”))

RI12 If the Chairperson has announced the proposed end time, then the Chairperson
will open an agenda item.

Formal

Vt, t Vm:CHAIR, di

state(y, t, output(m)) = communicates_from_to(m, declare, planned_end_time(t”))
=3It (t <t < t’ state(y, t/, output(m)) &= communicates_from_to(m, declare,
opened(i))

RI13 If the Chairperson has proposed an end time,

then the Chairperson will announce the agenda items.
vt, t”, i Ym:CHAIR
state(y, t, output(m)) = communicates_from_to(m, declare, planned_end_time(t”)) &
agenda_item_at(y, i, t)
=3t (t <t < t’ state(y, t, output(m)) &= communicates_from_to(m, declare,
agenda_item(i))

RI14 If the Chairperson has announced all agenda items,
then the Chairperson will ask if any Participant has another agenda item.
Vi, t7, Vm:CHAIR
Vi [agenda.item_at(y, i, t) =
' < tstate(y, t, output(m)) = communicates_from_to(m, declare, agenda_item(i))]
= Jt">t state(y, t’, output(m)) = communicates_from_to(m, request, other_items)

RI1S5 If the Chairperson has declared the last agenda item closed
then the Chairperson will close the meeting within 10 seconds.
vt, t/, Vm:CHAIR

@ Springer

Analysis of meeting protocols by formalisation, simulation, and verification 313

Vi [agenda.item_at(y, i, t) =

' < t state(y, t, output(m)) = communicates_from_to(m, declare, closed(i))] &
Jdi [agenda_item_at(y, i, t) &

state(y, t, output(m)) = communicates_from_to(m, declare, closed(i))] &

=3I t<t' <t+10)

state(y, t”, output(m)) = communicates_from_to(m, declare, meeting_closed)

Acknowledgments The authors are grateful to the editor and anonymous reviewers who gave a number
of constructive suggestions on how to improve the paper and its readabilty, and to the participants in the
meetings used as empirical material.

References

Barringer H, Fisher M, Gabbay D, Owens R, Reynolds M (1996) The imperative future: principles of
executable temporal logic. Research Studies Press Ltd John Wiley & Sons

Bosse T, Jonker CM, van der Mey L, Treur J (2005) LEADSTO: a language and environment for analysis of
dynamics by SimulaTiOn. In: Eymann T et al (eds) Proc. of the third german conference on multi-agent
system technologies, MATES’05 vol 3550. Lecture Notes in Artificial Intelligence, Springer Verlag,
pp 165-178

Carley KM, Gasser L (1999) Computational organization theory in multiagent systems: a modern approach
to distributed artificial intelligence. Chapter 7. Gerhard Weiss (ed). MIT Press

Clarke EM, Grumberg O, Peled DA (2000) Model checking. MIT Press

Cornelissen F, Jonker CM, Treur J (2003) Compositional verification of knowledge-based task models and
problem solving methods. Knowl Inf Syst J 5:337-367

Creighton JL, Using group process techniques to improve meeting effectiveness. URL: http://www. effec-
tivemeetings.com/teams/teamwork/creighton.asp

Croston JD, Goulding HB (1966) The effectiveness of communication at meetings: a case study. Oper Res
Quarterly 17(1):47-57

van Eck PAT, EngelfrietJ, Fensel D, van Harmelen F, Venema Y, Willems M (2001) A survey of languages for
specitying dynamics: A knowledge engineering perspective. IEEE Trans Knowl Data Eng 13:462-496

Fasli M (2003) Formal systems and agent-based social simulation equals null? J Artif Society Simul 7(4).
Available at: <http://jasss.soc.surrey.ac.uk/7/4/7.html>

Fisher M (1994) A survey of concurrent MetateM—the language and its applications. In: Gabbay DM,
Ohlbach HJ (eds) Temporal logic—Proceedings of the first international conference, Lecture notes in
Al, vol 827, pp 480-505

Forbus KD (1984) Qualitative process theory. Artif Intell 24(1-3):85-168

Gamboa R, Kaufmann M (2001) Nonstandard analysis in ACL2. J Autom Reason 27:323-351

Garfinkel H (1967) Studies in ethnomethodology. Englewood Cliffs, NJ, Prentice-Hall

Goffman E (1961) Encounters. The Bobs-Merrill Company

Goffman E (1963) Behaviour in public places. Collier-MacMillan, London

Henzinger T, Nicollin X, Sifakis J, Yovine S (1994) Symbolic model checking for real-time systems. Inform
Comput 111(2):193-244. Academic Press.

Jonker CM, Treur J (2002) Compositional verification of multi-agent systems: A formal analysis of pro-
activeness and reactiveness. In: de Roever WP, Langmaack H, Pnueli A (eds) Proceedings of the inter-
national workshop on compositionality, COMPOS’97. Lecture Notes in Computer Science, vol. 1536,
Springer Verlag, 1998, pp. 350-380. Extended version in: International J Coop Infor Syst 11:51-92

Kelso JAS (1995) Dynamic patterns: the Self-organisation of brain and behaviour. MIT Press, Cambridge,
Mass.

Law AD, Kelton WD (2000) Simulation modeling and analysis. McGraw Hill

Manna Z, Pnueli A (1995) Temporal verification of reactive systems: Safety. Springer Verlag

Moss S, Gaylard H, Wallis S, Edmonds B (1998) SDML: a multi-agent language for organizational
modelling. Comput Math Organ Theory 4(1):43-70

Niederman F, Beise CM, Beranek PM (1996) Issues and concerns about computer-supported meetings:
The facilitator’s perspective. MIS Quarterly 20(1):1-22

Port RF, van Gelder T (eds) (1995) Mind as motion: explorations in the dynamics of cognition. MIT Press,
Cambridge, Mass.

@ Springer

314 C. Jonker et al.

Reiter, R (2001) Knowledge in action: logical foundations for specifying and implementing dynamical
systems. MIT Press, 2001

Robert HM (2000) Robert’s rules of order (Newly Revised), 10th edn, HarperCollins Publishers

de Roever WP, Langmaack H, Pnueli A (eds) (1998) Proceedings of the international workshop on
compositionality, COMPOS’97. Lecture Notes in Computer Science, vol. 1536, Springer Verlag

Serman CB, Basili VR (1998) Communication and organization: an empirical study of discussion in
inspection meetings. IEEE Trans Soft Eng 24(6):559-572

Stirling C (2001) Modal and temporal properties of processes. Springer Verlag

Wolf K (2002) The makings of a good meeting. Available at: http://members.dcn.org/kjwolf

Catholijn M. Jonker is a full professor in Man Machine Interaction of the Delft University
of technology in The Netherlands. She studied computer science at Utrecht University. She
completed her PhD on the topic of Negations and Constraints in Logic Programming at the
same university. After completing a post-doc position on the same topic at the Universitét
Bern, she became an assistant professor at the Vrije Universiteit Amsterdam and switched
her research topic to agent technology. During the time at the Vrije Universiteit her interest
in cognitive science increased, which she combined with her work on modeling multi-agent
systems and organizations and her work on the analysis and modeling of the dynamics of
behavior of complex systems. After working for the Vrije Universiteit she became a full
professor in Artificial Intelligence and Cognitive Science at the Nijmegen Institute for
Cognition and Information of the Radboud Universiteit Nijmegen in The Netherlands.
First in Nijmegen and now in Delft she continues her research along the same lines.

Martijn C. Schut is Assistant Professor at the Department of Artificial Intelligence, Vrije
Universiteit, Amsterdam, The Netherlands. He received a MSc from the Vrije Universiteit
(NL) and a PhD from the University of Liverpool (UK). His research interests concern
the emergence of organizational dynamics in distributed multi-agent systems.

Jan Treur received his Ph.D. in Mathematics and Logic in 1976 from Utrecht University.
Since 1986 he works in Artificial Intelligence, from 1990 as a full professor and head
of the Department of Artificial Intelligence at the Vrije Universiteit Amsterdam. In the
1990s he headed a research program on component-based design of knowledge-based and
agent systems. In the last five years the research program focused on modeling dynamics
of agent systems in practical application areas, and related to other disciplines such as
Biology, Cognitive Science, Organization Theory, and Philosophy of Mind.

Pmar Yolum is an assistant professor at Bogazi¢i University, Istanbul. She received her
PhD and MS in computer science from North Carolina State University in 2003 and 2000,
respectively, and her BSc in computer engineering from Marmara University, Istanbul in
1998. She worked as a post-doctoral researcher at the Vrije Universiteit Amsterdam. Her
research interests include multiagent systems and service-oriented computing.

@ Springer

